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Abstract. We calculate the average of the quantum-dynamical evolution operator of a 
harmonic oscillator linearly coupled to a stochastic field with Lorentzian line shape of 
arbitrary bandwidth (Ornstein-Uhlenbeck process). In so doing we develop some new 
techniques to cope with the non-commutativity of the boson operators. We also compare 
the exact results with van Kampen's second-order cumulant expansion and find that the 
agreement is good if the bandwidth is large. 

1. Introduction 

Evolution equations with stochastic coefficients occur in many branches of physics and 
technology. Noise in electric circuits is one of the oldest examples; see for example 
Slepian (1958). More recent studies deal with the laser bandwidth problem in quantum 
optics (Agarwal 1976, Eberly 1976, Avan and Cohen-Tannoudji 1977). However, 
the noise is always taken to be white, thus &correlated, whereas in reality it has a 
finite correlation time, i.e., is coloured and not white. In the case of coloured noise 
even equations which are linear both in the noise and in the unknown vector +, 

$ = ( A + B g ( t ) + C g * ( t ) ) + ,  (1.1) 
are difficult to solve for the average of the vector + if the matrices or, more generally, 
the linear operators A, B, and C do not commute. Precisely this type of problem 
occurs in quantum optics. 

For complex Gaussian coloured noise several approximate methods of averaging 
solutions of equations of the type (1.1) have been put forward. The best known 
methods are the cumulant expansion (van Kampen 1976) and the matrix or operator 
continued fraction method (Zoller et a1 1981). Since, however, the precise range of 
validity of these methods is not known, it would be valuable to have a non-trivial but 
exactly soluble model whose solution can be compared with the results obtained by 
the various approximations. In this paper we want to present such a model. 

The model has been taken from quantum mechanics and the simplicity of the (Lie) 
algebra of harmonic oscillator creation and annihilation operators a and a+ is used to 
advantage. We put 

A = -iwoa+a, B = -i e'"'a+, c = -i e-'"'a* 

0305-4470/84/051019+ 13$02.25 @ 1984 The Institute of Physics 1019 



1020 M KuS, K Rzpiewski and J L van Hemmen 

The noise is taken care of by the so-called Ornstein-Uhlenbeck process, which is 
Gaussian and determined completely by its second-order correlation functions 

the odd correlation functions being zero. Here a bar denotes averaging with respect 
to the stochastic process, which has a Lorentzian power spectrum of width y > 0. The 
evolution equation (1.1) now takes the form of a Schrodinger equation, 

i$ = H$ (1.3) 

H=woa+a + g ( t )  elw'a++g*(t)  e-'"'a. (1.4) 

where the Hamiltonian H is given by 

We are interested in averaging the evolution operator related to (1.3), i.e., the operator 
U ( t )  which satisfies the equation 

i dUld t  = HU, U ( 0 )  = U .  (1.5) 

There are a few other examples of an averaged quantum dynamics. One either uses 
white noise (Alicki and Messer 1982) or exploits the weak coupling limit (Spohn 1977, 
Dumcke 1981) but in the present context both approaches are not feasible. We note, 
however, that for the Hamiltonian (1.4) one can obtain the averaged density matrix 
by less involved methods (van Hemmen and Rzgzewski 1982). 

In § 2 we reduce the problem of averaging the quantum dynamical evolution 
operator U ( t )  to a scalar problem which can be solved by evaluating a functional 
integral. The calculation of this integral, which is done in 9 9  3 and 4, requires some 
non-standard techniques, which turn out to be surprisingly intricate. In view of this 
intricacy we think that checking the approximate methods with an exact solution is of 
paramount importance. Some preliminary results are presented in § 5.  

2. Reduction to a c-number problem 

Let us introduce a new stochastic variable, 

f( t )  = g(  t )  exp[i( w - wo)  t ]  = g(  t )  exp(int), (2.1) 
where n = w - wg is the detuning between the frequencies wo of the oscillator and w 
of the field. The new f ( t )  also represents a complex Gaussian stochastic process. It 
has mean zero and second-order correlation function 

f(t)f*(t') = exp(-ylt- t ' l )  exp[in(t- ? ' ) I=  A(?, t '). (2.2) 

H=woa+a + f ( t )  exp(iw,t)a++f*(t) exp(-iw,t)a. (2.3) 

U,( t )  = exp(iwota+a) U (  t )  (2.4) 

i(d/ dt) U, = [ f ( f )  a+ + f*( t )  a ]  U,, (2.5) 

The Hamiltonian (1.4) is now given by 

For the evolution operator in the interaction picture, 

we then obtain the equation 
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where we use the identity 

exp(iwota+a) a +  exp( -ioota+a) = exp(iwot)a' 

and its Hermitian conjugate. The solution of equation (2.5) can be expressed in 
normally ordered form (Louise11 1973, § 3.11), 

Here e(7) = 1 if ~2 0, and zero elsewhere. 
To reduce the operator problem to a c-number problem we take the matrix element 

U,(t) of UI( t )  with respect to the coherent state la) (i.e., the state defined by 
a l a > =  ala)), 

( ') := ( a  1 ')I a )  

(2.7) 
which we write as U,[f,f*] to bring out its dependence upon f and f*. It is known 
that a bounded operator U is determined completely by its coherent state m m  
elements (a1 Ula).  (Klauder and S-shan 1968). Applying this observation to U I ( t )  
m e  that we have to evaluate (a1 VI( t)la) = U,(?) for arbitrary a and then reconstruct 
U I ( t )  from its matrix elements. 

Averaging U, ( t )  over the complex stochastic process f (  T) means that we have to 
perform the functional integral (Simon 1979) 

is the 'functional probability distribution' of f (  7) with normalisation 
[det A]-' and K = A-'. If one discretises the problem, the ensuing formulae are readily 
understood. Equations (2.7), (2.8), and (2.9) imply that (2.8) is a Gaussian integral 
which can be performed exactly since the exponent of the integrand is at most quadratic 
in f. The result is 

(2.8) 

(2.9) 

constant X = 

U a ( t )  = s(t) exp[%(t)a*a], (2.10) 
where 

s(t) =[det(U+ V)]-', (2.11) 
with 1 as the identity operator and V = BA, which has the integral kernel (0 S x, y G t )  
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Moreover, 

% ( t )  = -lr lr d r l  d rz  B ( T ~ ,  T ~ ) ;  
0 0  

B(rlr T ~ )  is the integral kernel of the operator 

B = ( K  + e)-' = A ( l +  V)-'. 

(2.13) 

(2.14) 

Using (2.10) we can easily reconstruct the operator U,(t) ,  
- 
U,( t )  =: 9( t )  exp{ %( t ) a+a }  := 9( t )  exp{ln( 1 + %( t ) )a+a} ,  (2.15) 

where : . . . : denotes the normal ordering or the boson operators a+ and a ;  a derivation 
of the second equality may be found, for instance, in Louise11 (1973). 

3. The determinant of the integral operator (Q + V) 

Equations (2.11)-(2.15) lead us to the problem of finding the determinant and the 
inverse of the integral operator ( U  + V). The technique we will use to solve this problem 
is hoped to be of interest in its own right. We, therefore, spell it out in some detail. 

The infinite determinant det(U+ V) is defined as the product of the eigenvalues of 
the operator 1+ V, 

det( 1 + V) = n ( 1 + A,) .  (3.1) 
1 

Each eigenvalue AI  of V appears as many times as is required by its algebraic 
multiplicity, and is determined by A,cp = Vcp for some cp # 0, i.e., 

A , c p ( x )  = lor dy V(x, y)cp(y). (3.2) 

Using (2.2) and (2.12) one easily finds an explicit expression for the kernel V(x, y), 

V(x, y)  = - ( I / ( )  e-lY + ( I / (+  1 / ~ * )  e(x - y)  + (I/()  e( y - x) e i ( x - y )  

- ( ~ / l * ) e ( x -  y )  e-5*(x-Y) (3.3) 

l=  ? + i n ,  l*= y- in .  (3.4) 

with O S X ,  y s  t and (cf equations (1.2) and (2.1)) 

The integral kernel V(x, y) is continuous in both arguments. Note that V(0, y) = 0, 
whatever y. 

The infinite product (3.1) makes sense if {A,} is absolutely summable. This is the 
case if V is a trace class operator (Simon 1977). Now V =  OA is indeed trace class 
since it is defined as the product of two Hilbert-Schmidt operators, 0 and A, which 
are both integral operators on Lz[O, t ]  with bounded and, hence, quadratically 
integrable kernels (Reed and Simon 1972, 0 VI.6). 

Let us consider the Fredholm integral equation 

u ( x )  = LJ lor V(x, y)u(y)  dy; (3.5) 

t is fixed throughout what follows. There is a one-to-one correspondence between 
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the characteristic numbers v and the eigenfunctions u ( x )  of this equation and the 
eigenvalues A and eigenfunctions ~ ( x )  of the integral operator V. Moreover we have 

(3.6) 

with Ivil+ CO as i increases. Taking advantage of (2.12), (2.2) and (3.4) we differentiate 
both sides of (3.5) three times with respect to x, so as to find 

det(1 + V) = n (1 + A i )  = n (1 + 1/  v i )  
i i 

or simply 

u ’ ( x )  = V I 1  + vI2, 

and 

(3.7a) 

U”( x) = - vf*z1+ V f Z 2 ,  (3.7b) 

uI’I( x) = - v( f + f * )  U + V f * 2 1 1  + @ I 2 .  

U ” I ( X )  + ( f *  - f ) u ” ( x )  - 1 f 1 2 U f ( X )  + v( f + f * ) U ( X )  = 0, 

(3.7c) 

(3.8) 

We then add the equations for U’, U”, and U’’’, and obtain 

or succinctly, D( v ) u  = 0, where D( v) is a differential operator with constant coefficients. 
So we have the following result: if U is an eigenfunction of the problem ( 3 . 3 ,  then U 
is three times differentiable, satisfies the third-order differential equation (3.8) and, 
hence, has the form 

3 
u ( x )  = c Ai  eatx 

i= 1 
(3.9) 

where the ai are the roots (zeros) of the third-order polynomial 

W J a )  = a 3  + ([* - f ) a 2 -  1fI2a + v([+ [*) ( 3 . 1 0 ~ )  

or, equivalently, 

W,(a) = a ( a  - [ ) ( a  + f * )  + v ( f +  f * ) .  (3.10b) 

To determine the coefficients Ai, 1 s i s 3, we note that U being a solution to (3.5) 
implies 

u ( 0 )  =o,  f U ’ ( 0 )  - u”(0)  = 0, f * u ’ ( t ) + u ” ( t )  =o, (3.11) 

as one readily verifies by an explicit calculation invoking (3.7). Combining (3.9) and 
(3.11) we find a linear homogeneous system of equations for the A,, 

c Ai=O, C U,( f - ai)Ai = 0, c e”i‘ui(f*+ai)Ai = O .  (3.12) 

A necessary and sufficient condition for the Ai to be non-zero is that the determinant 
of the system vanish, 

3 3 3 

i = l  r=1  i = l  

(3.13) i 1 1 1 

eairul(f*+ a,) e”zfa2(5*+ a2)  e“3‘a3([* + u3) 
D(al, a2,  a3)  = det a2(f - a2) a3(f-a3) =o.  
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One may verify that direct substitution of (3.9) into (3.5) leads to the same condition. 
D(al, a2, a3) is a function of v since the ai are roots of the polynomial W, and, thus, 
depend on v. The characteristic numbers v of the integral equation (3.5) are the 
zeros of the function D( v )  = D(a, ,  u2, a3) and, conversely, the zeros of D( v) give 
rise to eigenvalues of the problem (3.5). The ai always satisfy W,,(Q,) = 0. Moreover, 

3 

i = l  
D( Y) = ea~'qia,(ai  + 1*)2 (3.14) 

where 
41 = a 3 - a 2 ,  4 2  = a1 -a37 q3=az-a1. (3.15) 

Inderiving(3.14) we haveused (3.10b) and (3.19). Note thecyclicstructureof (3.15). 
Denote by M the matrix whose determinant (3.13) has to vanish. A solution to 

(3.12) is in ker(M), the kernel of M, and dim(ran M ) ,  the dimension of the range of 
M, is nothing but its column rank. Since dim(ker M)+dim(ran M )  = 3  and 
dim(ran M )  3 1, we can find at most two independent non-zero solutions of (3.12), 
i.e., the geometric multiplicity of the eigenvalues v of (3.5) is at most two. Suppose, 
in fact, the degeneracy were two. Then dim(ran M )  = 1 and all the column vectors of 
M are to be equal, so that a, = a, = a3.  It is shown in appendix 2 that this can never 
be the case. Hence the geometric multiplicity of the eigenvalues is one. In appendix 
2 we also show: (a) double roots of W, do not occur as eigenvalues so that (3.9) with 
distinct ai is the most general representation of an eigenfunction, and (b) the algebraic 
multiplicity of the eigenvalues does not exceed one either, i.e., they are simple. 

D( v )  is closely related to an entire function. To show this we must make a small 
detour. D(v) as defined in (3.13) is anti-symmetric in a l ,  a2,  and a3,  and so is its 
representation (3.14). Expanding all exp(ait) in (3.15) we find 

Because Q, is an anti-symmetric polynomial in a,, a2,  and a3, it is divisible by the 
anti-symmetric Vandermonde determinant 

V3(al, a2,  a3)  = det a 2  

and may be written (Mostowski and Stark 1964, p 341) 

(3.17) 

Q n ( a 1 ,  a29 a31 = V3(al, a27 a3)Sn(al? a2, a3), (3.18) 

where S,  is a symmetric polynomial. In fact, S,  itself is a polynomial in three elementary 
symmetric functions (Mostowski and Stark 1964), which are, according to Vieti's 
formulae applied to (3.10a), simple analytic expressions in v :  

a, + a2+ a, = l -  l*, a 1 a 2 + a , a 3 + a 2 a 3 = - ~ ~ ~ 2 ,  U 1 4 2 4 3  = - v( 5 + l*). 
(3.19) 

Thus D( Y) may be written as the product of an entire function S (  Y), 

(3.20) 



Averaging in quantum stochastics 1025 

and the Vandermonde determinant V3( v )  = qlq2q3;  cf (3.17). If v is an eigenvalue of 
(3.5), V3( v) never vanishes. 

To get a convenient representation of D(v) in terms of its zeros, which are in 
one-to-one correspondence with the vi as they appear in (3.6), we prove that S (  v )  is 
an entire function of order less than one (Boas 1954, Titchmarsh 1939). To this end 
we show that for sufficiently large R there exist constants c1 and c2 independent of R 
such that 

(3.21) 

Since V3 is irrelevant for this estimate, equation (3.21) also holds for IS( v)l. Indeed, 
by (3.14) 

max ID( v)l G c1 exp( C ~ R ' / ~ ) .  
l u ( = R  

I D ( v ) l =  C e " ~ ' q i ( a i + ~ * ) ( a i + i - ~ ) ( a i + z - ~ )  
1 3  i = l  

3 

6 C Ie"Jl Iqil [(ai + ~ * ) ( a i + l -  l)(ai+*- 
i = l  

and for sufficiently large IvI (see appendix 1) 

so that 

(3.22) 

(3.23) 

for suitable chosen c1 and c2. The inequality (3.23) implies together with (3.22) and 
the product representation D( v )  = S (  v )  V3( v) that S (  v )  is an entire function whose 
order does not exceed f .  For this type of function the Hadamard factorisation theorem 
(Boas 1954, § 2.7, Titchmarsh 1939, § 8.24) asserts that S (  v )  may be written as 

S (  v )  = S(0) n (1 - v /  V i )  
I 

(3.24) 

where the v, are the zeros of S ( v ) ,  which have infinity as an accumulation point. 
Then we get for D(v) 

(3.25) 

Substituting v = 0 into equation (3.10) we find the roots a, = 0, a2 = 5, and a3 = -C*; 
in addition, V3(0) = -l5I2(5+ 5*) f 0 and, by (3.141, D(0) = 151*(5+ 5*) exp(5t). Thus, 
by (3.25), 

S(0) = -(5 + C*) exp(5t). (3.26) 

Each zero vi of D( v )  gives rise to precisely one characteristic value of the Fredholm 
equation (3.5) and, hence, appears in (3.6). Combining this observation with (3.25) 
and (3.26) we see that the infinite product (3.6) is given by 

(3.27) 
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and accordingly, using (3.14), 

(3.28) 

where the quantities ii and are to be evaluated at v = -1, i.e., the 6, are the roots 
of W-, (a )  as defined in (3.10) and i1 = 63-62, i2 = 6, - Li3, Q3 = Z2- L i l .  This finishes 
the calculation of the determinant of ( U +  V). 

4. The inverse of the integral operator (U+ V) 

Our second problem consists in finding the inverse of the operator ( U +  V), i.e., solving 
the equation 

(I+ V ) G = G ( l +  V)=B (4.1) 
for the inverse G = ( I +  V)-'. We will determine its kernel G(x, y) by solving 

The existence of G is secured by first checking ( D -  1) # 0. Differentiating both sides 
of (4.2) three times with respect to x and recalling (3.7) and (3.8), with v=-1, we 
derive the following differential equation for G(x, y), 

D( -1) G (  X, y) = (d3/dx3) S( x - y)  + (r* - 5)(d2/dx2) - 15I2(d/dx) S (  x - y ), (4.3) 
where D(-1) has been defined by means of (3.8) with v = -1. Note that we differentiate 
G(x, y)  with respect to x. Before proceeding we rewrite (4.3), 

D(-l)(G(x, Y ) - ~ ( x - Y ) )  = ( ~ + ~ * ) S ( X - Y ) .  (4.4) 
A special solution to (4.4) is given by (cf the last paragraph of the previous section 
for the notation) 

3 

C @ ( x - Y ) @ ~  exp{cii(x-y)), i i  =(5+5*)4i/gl@243. (4.5) 
1=1 

So the general solution to (4.4) and, hence, (4.3) may be written as 
3 

G(x, Y )  - S(x - y) = exp(;ix)[Bi(y) + @(x - y)Fi exp(-ily)]. (4.6) 

The Bi(y) are as yet unknown functions of y. For the moment we take y fixed, 0 < y < r, 
and write $(x, y)  = G(x, y)- ~ ( x - Y ) .  Because of (4.2) the quantity $(x, y), which is 
nothing more than the right-hand side of (4.61, satisfies the same boundary conditions 
as u(x) in (3.11). Hence we have 

i = l  

(4.7) 
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which is to be compared with (3.13). The inhomogeneity stems from (4.5). The fact 
that the Gi must be evaluated at v = -1 and D(-l) # 0 has to be constantly borne in 
mind. We now solve (4.7) for the Bi(y) and substitute the answer into (4.6). Combining 
(2.13), (2.14), (2.2),  and (4.6) we then get 

This solves the problem of obtaining the exact average (2.15) of the quantum 
mechanical evolution operator U,( t ) .  

5. Comparison with the cumulant expansion 

The functions 9(t) and % ( t )  given by (3.28) and (4.8) may be substituted into (2.15) 
so as to give an exact expression for U,( t ) .  We want to compare this expression with 
the approximate solution which can be obtained by means of van Kampen's cumulant 
expansion. We incorporate contributions up to second order, assume exact resonance 
(0 = O), and apply equation (12.11) of van Kampen (1976). After some simple algebra 
we then obtain 

UI(t)= SI(?) exp{ln(l+ i e l ( t ) ) a + a )  
where 

and 

(5.3) 

Note that (5.1) and (2.15) have the same form. Equations (5.2) and (5.3) are to be 
compared with the exact solutions (3.28) and (4.8). We have done so for various 
values of y, with R=O. As seen in figures 1 and 2, for large y we get a fairly good 

t t 

Figure 1. The function 9 ( r )  for y = 3 . 0  and exact Figure 2. The function 9( t )  for y = 3 . 0  and exact 
resonance ( 0 = 0 ) .  (a)  Exact solution (3.28). ( 6 )  resonance (n=O). (a )  Exact solution (4.8). (b)  
Second-order cumulant expansion result (5.2). Second-order cumulant expansion result (5 .3 ) .  
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overall agreement. For small y the agreement is less satisfactory and restricted to 
small t-values. For instance, as shown in figure 6, gl(t) does not reproduce the 
oscillations which the exact %( t )  exhibits. Qualitatively, 9,( t )  does a slightly better 
job; see figure 5 .  

To summarise, as expected ( ~ ~ 0 :  y - ' ) ,  the performance of van Kampen's second- 
order cumulant expansion improves as y increases. But in view of the approximations 
involved we think that the agreement for large y is quite spectacular. 

t 

Figure 3. As figure 1, for y =  1.0. 

t 

Figure 5. As figure 1, for y =0.1. 
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Appendix 1: A useful inequality 

A root xo of a polynomial of degree n is a solution to the equation 

xn+alxn- '+ .  . .+an=O. (Al . l )  

We wish to estimate Ixo( in terms of the coefficients ak, 1 s k s n. To this end we prove 
the following lemma. 

Lemma. If xo is a root of a polynomial of degree n, then 

Ixols2 max ( l a k l ) ' / k .  (A1.2) 
1 s k s - n  

Proof. The inequality (A1.2) is obvious if xo = 0. Let us therefore assume that xo # 0. 
Putting 

max ( l a k l ) ' / k  = lakoll/b (A1.3) 
l s k s n  

we have 

lakl lak,,lk'ko, l s k s n ,  (A1.4) 

lakl (XO(n-k c lablk/ko(Xoln-k, (A1.5) 

and thus 

Rewriting (Al .  l ) ,  

x n  = -(alx"-' + . . . + a , ) ,  (A1.6) 

we get, using (A1.5) and the fact that xo is a root, 

so that, because xo f 0, 

where q = l a b ~ l ~ k ~ x o ~ - l  > 0. Suppose q <& 

which contradicts (A1.8). Hence q 3 and 

~ x o ~ s 2 ~ a k o [ 1 ~ k  = 2  max (lakl)'/k. 
l s k s n  

(A1.7) 

Then 

(A1.8) 

(A1.9) 

(A1.lO) 

Let us apply the lemma to the third-order polynomial W, which has been defined 

( A l . l l )  

in equation (3.10). For sufficiently large Iv) we have 

max{I~*-& I& ( l v l l ~ + ~ * 1 ) 1 / 3 )  = 1~+~*1'/31~11/3, 
and thus 

lai( v ) l s  c(v11/3, (Al .  12) 
which was to be proved. 
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Appendix 2: The remaining proofs 

We first want to prove that the geometric multiplicity of the eigenvalues v of (3.5) 
equals one. To this end we turn to the polynomial W,(a) defined in ( 3 . 1 0 ~ )  and apply 
Vieth’s formulae (Mostowski and Stark 1964, p 346), 

ala2a3 = - v ( 5 + 5 * ) ,  a l a 2 + a l a 3 + a 2 a 3 = - ( ~ J 2 ,  a,  + a, + a3 = -( [* - 5) 
(A2.1) 

where [ = y +iR and y > 0; cf equation (3.4). In the case of a triple root 

a,  = a, = a3 = a (A2.2) 

and 

a 3 = - v ( 5 + 5 * ) ,  3a2 = - ( [ I 2 ,  3a = 5- [*. (A2.3) 

Substituting a = i(2R/3) into the expressions for a’ and a3  we find 

a = * ( 2 i / J 3 ) y ,  R = 4 3  y. (A2.4) 

On the other hand, if we have a triple root (A2.2), the solution to the differential 
equation (3.8) may be written 

U ( X . ) = ( A , + A ~ X + A ~ X ~ )  exp(ax). (A2.5) 

The function U, whose form differs from (3.9), also has to satisfy the boundary conditions 
(3.11). First, u ( 0 )  = O  implies A ,  = 0. The remaining two boundary conditions give a 
homogeneous system of two equations for A ,  and A3. We find non-trivial solutions 
only if the determinant vanishes, i.e., if t >  0 is such that 

t 2 [ / [ I 2 +  U ’ [ -  2 ~ [ *  - 2a3]+ t[21[I2+4a([- [*) - 6a2+  2[*]+ 2([+ [*) = O .  

Combining (A2.4) and (A2.6) one may verify that such a t does not exist. In the case 
of a double root, where 

(A2.7) 

(A2.6) 

a,  = a, # a3 

the solution to (3.8) has the form 

u ( x )  = ( A ,  +A,x) eaiX+A3 (A2.8) 
but similar calculations lead to the conclusion that such a solution cannot exist either 
unless all the Ai vanish. Hence we have shown that the most general representation 
of the eigenfunctions u ( x )  is given by (3.9), the geometric multiplicity being one. 

Turning to the algebraic multiplicity, which occurs in (3.6), let us suppose that we 
can find a U # 0 such that 

(U- vv)(n- V V ) U  =o.  (A2.9) 
We have to show 

(A2.10) U = (1 - VV) U = 0 

so as to conclude that the eigenvalues v are simple. 
Plainly, by (3.7) and (3.8), 

(U - VV) U = o* D( v) U = 0, (A2.11) 
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so that, by (3.9)-(3.13), 
3 

v(x) = B, eagx, 
i = l  

(A2.12) 

where the B, are unique up to a multiplicative factor. In fact, we have to show Bi = 0, 
1 s i s  3. By the definition of U, 

( n -  v V ) u  =&Bi eaIx, (A2.13) 

and repeating the arguments which lead from (3.7) to (3.8) we get 

D( v )  U = X i & [  W,( ai) - v( 5 + 5*)] e a i x ,  

i.e., 

D ( v )  U = - v ( 5 + l*)ZiBi  e ' I x ,  

since W,(a,) = 0. Equation (A2.14) may be solved and one finds 

(A2.14) 

(A2.15) 

However, returning to (A2.9), we see that 

U = 2 v v u  - v 2  V (  V u )  2 v v u  - v 2  vw (A2.16) 

and, whatever w, U is bound to satisfy the boundary conditions (3.11). We now have 
to check whether (A2.15) is consistent with these boundary conditions, i.e., 

(A2.17a) 

(A2.17b) 

Moreover, we always have (3.12), including Z,Bi =O.  The equations (A2.17) and 
(3.12) are incompatible unless all B, vanish. 

lU'(0) = u"(0) = O+ZiB,qi[l--2aj] = 0, 

l*u ' (  t )  + U"( t )  = O+ZiBi e"i 'qi[ l*(  a&+ 1) + ai(2 + air)] = 0. 
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